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Summary

Lightweight ceramic ablators (LCAs) were recently
developed at Ames to investigate the use of low density
fibrous substrates and organic resins as high temperature,
high strength ablative heat shields. Unlike the traditional
ablators, LCAs use porous ceramic/carbon fiber matrices
as substrates for structural support, and polymeric resins
as fillers. Several substrates and resins were selected for
the initial studies, and the best performing candidates
were further characterized. Substrates used in this
experiment include the flight certified reusable surface
insulation (RSI) such as Lockheed Insulation-900
(LI1-900), the Ames developed alumina enhanced
thermal barriers (AETB-20 and AETB-50), and Fiber
Materials Inc. (FMI) carbon Fiberform® insulation.
Methylmethacrylate (pmma), epoxy, and phenolic were
selected as infiltrants with char yields ranging from

0to 61%.

Three arc-jet tests were conducted to determine the
LCA’s thermal performance and ablation characteristics
in a high enthalpy, hypersonic flow environment.
Phases I and IIl were conducted in the 60 MW Inter-
active Heating Facility (THF) where the cold wall heat
heating rates ranged from 830 to 1,440 Btu/ft2-sec and
stagnation pressures of 0.081 to 0.333 atm. Phase II was
performed in the 20 MW Aerodynamic Heating Facility
(AHF) where the cold wall heating rates ranged from
100 to 400 Btu/ft2-sec and pressures from 0.018 to
0.062 atm. Mass loss and recession measurements were
obtained for each sample at post test, and the recession
rates were determined from high speed motion films.
Surface temperatures were also obtained from optical
pyrometers.

Introduction

Future space vehicles such as Mars Environmental
Survey (MESUR) and other proposed manned explora-
tion of other interstellar planets will experience severe
heat loads during descent into planet’s orbit (ref. 1).
These vehicles will require heat shields that can protect
the vehicles from both high radiative heating environ-
ment and high shear load. In the past decades, several
conventional ablative heat shields such as

Avcoat 5206-HC and SLA-561 were developed for the
Apollo and Viking missions. These ablators were
effective in protecting the vehicles from the high heating
environment. But because of their high density, however,
these materials are not always mass efficient. It is
important to reduce the total TPS weight of the vehicle
as a way to maximize scientific payload.

The objective of this report is to describe the develop-
ment and fabrication of LCAs and the results of pre-
liminary thermal performance analysis obtained from
arc-jet testing. LCAs use the low density porous fiber
matrix that is partially impregnated with polymeric resin.
Special infiltration techniques were developed to control
the amount of resins so that the final product maintains
the high porosity and low thermal conductivity. With the
new impregnation techniques, LCAs can be produced
which have very low density. This is believed to be mass
efficient as a technique to economize on structural
weight and fuel. Materials analyses consist of thermo-
gravimeltric analysis (TGA), elemental analysis of char,
and ablation characteristics in a high enthalpy, hyper-
sonic environment. A general infiltration technique of
polymeric resins in ceramic substrates is described, and
materials properties’ measurements are discussed.
Several conventional ablators such as Avcoat-5026-HC,
SLA-561, ACUSIL-1, and MA-25S as well as balsa
wood (ref. 2) were also evaluated for direct comparison

purposes.
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Materials

Table 1a shows material compositions and densities of
different substrates and infiltrants used in the LCA’s
development. Special impregnation techniques and
curing procedures were developed for each infiltrant.
Three infiltrants were selected based on char yield, and
four substrates were used based on their temperature
capabilities and mechanical properties. LCAs were
produced with two densities—15 Ibmy/ft3 (partially dense
where the amount of resin infiltrated in the matrix is



controlled) and 85 Ibm/ft3 (fully dense where the resin
fills the entire porous volume). Two compositions of the
AETB based LCAs (a-LCAs) were used to take advan-
tage of the high melting temperature of alumina fibers
(table 1). The silica based LCAs (s-LCAs) use the high
purity microquartz fibrous L1-900 as substrates. Another
silica substrate used in the LCA’s development is the
Ames Insulation-8 (AI-8) which consists of 98.5%
microquartz fibers and 1.5% by weight of silicon carbide
(SiC) powder (21 pm diameter particle size). The addi-
tion of SiC particles increases the Al-8's total hemi-
spherical emittance and takes advantage of substrate
reradiation as an additional way of rejecting heat at the
surface.

The carbon based LCAs (c-LCAs) used carbon
Fiberform® insulation manufactured by Fiber Materials,
Inc. (FMI). The carbon Fiberform insulation is made

of 14-16 um diameter and 1,600 pm length carbon
fibers which are bonded together with phenolic resin.
Fiberform is a low density, rigid, carbon bonded carbon
fiber insulation that can be used in a vacuum or inert
environment at temperatures up to 5,460°R. Its density
varies from 8.00 to 12.44 1bm/ft3 (ref. 3). Another
carbon material used in this study is the carbon-bonded
carbon fiber (CBCF) material manufactured by Oak
Ridge National Laboratory (ref. 4). CBCF was originally
developed for use as a radioisotope heat source and is
made of small diameter (10.5 pm) continuous rayon
filaments that were precision chopped to 0.25 nm length.
The fibers are then carbonized at 2,921°R and bonded
with phenolic resin. The phenolic resin in the FMI
Fiberform insulation was completely pyrolyzed to bond
the carbon fibers, whereas the phenolic resin in CBCF is
partially pyrolyzed and remains as particles within the
fiber matrix.

Table 1b shows the composition, density of conventional
ablators, and test conditions at which each sample was
evaluated. Avcoat 5026-39HC and SLA-561 were
developed and used as ablative heat shields for the
Apollo and Viking spacecraft (ref. 5), respectively. Both
materials have been flight certified, and this is the reason
that they are used as a benchmark in the evaluation of
LCA’s performance. The MA-25S manufactured by
Martin Marietta is a medium density ablator that has
been used as a thermal protection material on the space
shuttle external tank. It is an elastomeric silicone-based
material that can be applied by spraying or molding at
room temperature (ref. 6). The Acusil-1 is manufactured
by Acurex Corporation and will be used as thermal
protection on the COMET probe (ref. 7).

Infiltration Technique

Figure 1 shows a custom made apparatus for the
infiltration process of LCA’s test models. Each model is
individually impregnated to ensure the uniform distribu-
tion of the resin within the ceramic matrix. The volume
and density of each model are calculated from the
weight, length, and diameter and are used to determine
the amount of resin and solvent needed for the infil -
tration process. Different curing processes and drying
procedures were developed for each resin. For example,
after the substrate absorbs the pmma infiltrant as a resin
solution, a 24-hour air dry is needed to complete the
curing cycle and to evaporate the solvent. The phenolic
infiltrant, on the other hand, requires a two-step curing
process to ensure a complete cross linking of the
polymer. This curing process requires several heating
cycles and several days to complete the infiltration
process.

Materials Testing and Analysis

It is necessary to obtain the thermophysical and
thermochemical properties of LCAs in order to better
describe and evaluate their thermal performance and
ablation characteristics. Tests and analyses described in
this paper were to be used as a screening process to
select the best performing LCA candidates. Further
characterizations are needed to fully understand the
performance of each selected material as discussed
below.

1. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis gives the decomposition
temperature and weight loss of each material as a
function of temperature at a given constant heating rate.
The pyrolysis rate constant and the char yield of
polymers can also be determined from these data.

2. Gas Composition and Mass Spectroscopy (GCMS)

Elemental composition analysis of the char using GCMS
was obtained for each resin used in LCAs.

3. High Enthalpy, Hypersonic Flow Environment

a. Facllities— Three arc-jet tests were conducted in two
different arc-jet facilities located at NASA Ames
Research Center—the 20 MW Aerodynamic Heating
Facility (AHF) and the 60 MW Interactive Heating
Facility (IHF). In general, an arc-jet facility, shown in
figure 2, uses an electrical discharge to heat a gas stream
to very high temperature. The result is a highly energetic



(i.e., high enthalpy) gas flow that can be used to create
the aerothermodynamic heating conditions that are
similar to re-entry flight environments experienced by a
space vehicle. The test gas, which is air for the case of
simulated earth re-entry, is heated by an electrical
discharge confined within the 6-cm (20 MW AHF) or
8-cm (60 MW IHF) diameter constrictor column of the
arc heater (ref. 8). After leaving the arc heater column,
the highly energized gas is supersonically expanded by a
convergent—divergent nozzle and is discharged into an
evacuated test chamber where the test model is located.
The stream velocity and enthalpy can be varied by using
different nozzle exit to throat ratios. The area ratios can
be varied from 64 to 400 in the 20 MW AHF and 8.6 to
298 in the 60 MW IHF. The stream can attain enthalpies
up to 20,000 Btu/lbm and velocities up to Mach 8.

Stagnation point heat transfer rates and pressures were
measured by copper calorimeter, and stagnation enthalpy
was approximated using a nozzle flow computer code
(ref. 9). Table 2a shows the nominal test conditions used
in three test phases. Listed are the heat flux, stagnation
pressure, estimated enthalpy, and model nose radius used
in each test phase.

b. Test Models— Test models and holders were
designed based on the constraints of heating require-
ments and are shown in figure 3. In Phase II, two of each
s-LCA-m and s-LCA-p models were instrumented with
type R thermocouples to obtain the in-depth temperature
profiles as a function of exposure time.

¢. Instrumentation— Optical pyrometers were used to
estimate the model’s surface temperature by adjusting
the apparent brightness of the model during arc-jet
exposure. This pyrometer was mounted outside the test
box and viewed through a quartz window and was
manually recorded. A 'I‘hermogage® pyrometer with a
30 in. focal length and wavelength of ~0.8 um was
mounted inside the test chamber. Figure 4 shows the
setup of the pyrometer and motion film apparatus.

Experiment and Results

1. Thermogravimetric Analysis

Figure 5 shows the percentage of weight loss of three
organic infiltrants from 23°C to 1,100°C at heating rate
of 50° per minute in nitrogen environment. Decomposi-
tion temperature, T 4, was determined by using the
intersect point of two tangent lines at the curvature. The
initial stage of the decomposition process of phenolic
occurs at 260°C, and the final stage is at 640°C where
~46% of its weight was removed. Similarly, the epoxy

started to decompose at 330°C and lost ~78% of its
weight at 600°C. Pmma’s decomposition process is more
dramatic; the process began at 350°C and completed at
600°C where almost all of pmma was removed. The char
yield of each resin is determined by obtaining TGAs in
both air and inert environment. Phenolic has the highest
char yield (~61%) and pmma has the lowest (~0%);
meanwhile, the char yield of epoxy is at midpoint
(~23%).

TGAs of ceramic fiber matrix LCAs with and without
the above resins did not show any changes in the
decomposition temperatures and mass loss.

2. Gas Composition and Mass Spectroscopy (GCMS)

Table 2b shows the elemental composition of pmma,
epoxy, and phenolic resins obtained from GCMS
analysis. As expected, the char mainly consists of
elemental carbon, some oxygen, and small amount of
hydrogen.

3. Arc-Jet Test Results

Results are tabulated for each test phase and are grouped
by materials and test conditions (i.e., heat flux, stagna-
tion pressure, and exposure time). Density, weight, and
length measurements were obtained for each sample at
both pretest and posttest and are shown in tables 3, 4,
and 5 for Phases I, II, and IlI, respectively.

The difference in density of each material can give a
false representation of the recession data; thus, a new
parameter is introduced to account for this nonuni-
formity (ref. 10). The mass loss flux is defined as the
product of the stagnation recession rate and material’s
virgin density to account for the difference in density of
the materials used in this experiment.

m = Spy
The effective heat of ablation, Hff, is calculated based

on the measured recession rate, s, and virgin density, pv,
of each material using the following equation:

q
Hegr = %
SPpv
where s is the measured recession rate obtained from
high speed films. Heff can also be calculated using the
mass loss rate and cold wall (cw) heat flux (ref. 11).
QCW
Hegp = —=
off = ha
where m is the total mass loss rate. The Heff values
presented in the last column of the tables are based on



the stagnation point recession rather than m because the
mass loss values reported in tables 3-5 include the mass
loss at both surface and side walls of the test models.

a. 60 MW IHF Phase I Test- Table 3 shows the test
result of Phase I testing in the 60 MW IHF at two heat
flux levels, 830 and 1,100 Btu/ft2-s, with stagnation
pressures of 0.081 and 0.141 atm, respectively. LCA’s
test models were produced with two densities, ~65 and
~14 Ibm/ft3. The following observations can be made
from the Phase I testing.

(1) Fully Dense LCAs: As shown in figure 6, the
mass loss fluxes of all high density LCAs are of the
same order of magnitude. However, the test models with
epoxy infiltrant suffered severe cracking at the tip and
around the side walls. LCAs with pmma infiltrant (~0%
char yield resin) had a thin layer of char (carbonaceous
material) on the surface due to a phenomenon called
molecular cracking. When pmma decomposes, it gives
out hydrocarbon molecules. At very high temperature,
these molecules dissociate to give hydrogen gas and
carbon atoms that are deposited on the surface as char.
This thin char layer was observed on all substrates. Some
microcracks were observed on the a-LCA-p surface at
post test.

(2) Partially Dense LCAs: Figure 7 shows mass loss
flux plot for heating condition of qey = 830 Btu/ft2-s
and stagnation pressure of 0.081 atm. As shown in this
figure, the partially dense LCAs suffered severe mechan-
ical failure as early as 5 sec of exposure, especially the
a-LCAs. One probable cause for this mechanical failure,
sometimes referred to as spallation, is the rapid increase
in surface temperature that results from the formation
of a char layer on the model’s surface. The increase in
surface temperature, however, is not sufficient to initiate
the vaporization of the ceramic fibers but is high enough
to cause melting of the substrate. The model subse-
quently undergoes shape changes and the heating
condition at the surface is further decreased, which
accelerates the observed failure.

The AETB material was used as another substrate for the
development of LCA’s and is identified as a-LCAs. This
substrate consists of a large quantity of alumina fibers
that have higher melting temperature than that of silica
fibers in the pure silica substrates. Thus, it can be
expected that the bulk melting temperature of a-LCAs

is higher than that of the s-LCAs.

The mass loss flux plots, however, show that the a-LCAs
have higher recession rates compared to the s-LCAs.
One of the reasons for this behavior is that the boron
oxide in the aluminoborosilicate fibers in the AETB
substrate became volatile at high temperature causing the

SiO; fibers to devitrify, which lowers the bulk melting
temperature of the AETB substrate (ref. 12). The high
heating rate coupled with high stagnation pressure
accelerates the structural failure within the fiber matrix.
This plot also shows that the mass loss fluxes of the
s-LCA-p’s are comparable with the conventional
ablators (SL.A-561, Avcoat). Visual inspection at posttest
indicated that the ablating surfaces of all LCAs consist
of a char layer that is reinforced by a coalescent ceramic
oxide melt layer, whereas the surfaces of SLA-561 and
MA-25S consist of a powdery char and a thick brittle
char layer respectively.

In order to prevent mechanical failure, the substrates
used in LCA’s development must be able to withstand
high surface temperature (e.g., substrates have high
melting points). Carbon Fiberform insulation and the
Al-8 materials were added to the substrates test matrix
(table 1) based on the above findings. Scanning electron
microscopy (SEM) and TGA analysis of tested models
also indicated that the distribution of resin within the
fibrous matrix was not uniform for the partially dense
LCAs. Better infiltration techniques were developed to
obtain a uniform distribution of resins for Phases II
and IIL

b. 20 MW AHF Phase II Test- Three test conditions
were used in Phase II to simulate various reentry peak
heating environments for a Lunar return mission

(ref. 13). The heat fluxes varied from 100 to

400 Btu/ft2-sec, stagnation pressures from 0.018 to
0.062 atm, and the exposure time was 60 seconds.

Pre-test and post-test measurements are shown in table 4.
Mass loss flux and recession data from high speed films
for heat fluxes of 100, 200, and 400 Btu/ft2-sec are
plotted in figures 8, 9, and 10, respectively. One notable
feature in these three figures is that the LI-900 baseline
without resin and balsa wood have the highest mass loss
fluxes or recession rates. It was observed that balsa wood
and the LI-900 baseline undergo a significant shape
change (increase in nose radius of curvature) with an
associated reduction in convective heat flux. The LI-900
surface has a thick layer of coalescent melt, and the char
layer on the balsa wood model is of a typical wood
burned surface.

(1) Figure 8 showed that, at heat flux of
~100 Btu/ft2-sec or below, the addition of SiC particles
significantly reduced the recession rate and mass loss
flux of the silica substrate—aimost by 50%. The addition
of high blowing (high rate of pyrolysis gas) resins such
as pmma did not improve the materials’ thermal
performance due to a significant increase in the final

density of the system. The effective mass loss fluxes of

Avcoat, c-LCA-p, and s-LCA-p are comparable with the



Al-8 whereas the -sLCA-m, w-LCA, and balsa wood
have the highest mass loss fluxes.

(2) At heat flux of 200 Btu/ft2-sec, figure 9 shows
that Acusil-1 and AI-8 have the lowest mass loss flux
and balsa wood and s-LCAs have the highest. At this
flux level, it is shown that the addition of pmma
improved the performance of most LCA’s substrates,
especially the AI-8’s, due to its high blowing charac-
teristics of pmma. The decomposition and gas pyrolysis
of pmma acts as a transpiration coolant to the silica
surface and thus reduces the heating rate at the surface.
This blowing characteristic of pmma combines with the
high emittance characteristic of Al-8 significantly
decreases the overall recession rates of AI-LCA-pm
material.

The presence of phenolic in s-LCA-p, however, seems to
cause a higher recession rate. Unlike pmma resin, the gas
pyrolysis of phenolic resin has a much lower blow ing
rate and high char yield. Thus, the transpiration cooling
effect from the gas pyrolysis process diminishes due to
the low blowing characteristic, and a thick char layer is
formed due to its high charring characteristics. The
combination of these two effects caused the surface
temperature to increase and subsequently the melting of
the substrates.

(3) Figure 10 shows the stagnation point mass loss flux
of LCAs at a heat flux of 400 Btu/ft<-s and stagnation
pressure of 0.061 atm. One interesting observation from
these plots is that, at this flux level, the effects of non-
charring and high blowing characteristics of pmma
become less effective compared to the high charring and
low blowing characteristics of phenolic. At this heating
rate, it is believed that most energy at the surface is
being rejected through a reradiation mechanism rather
than through boundary layer blockage or transpiration
cooling. However, the increase in surface temperature is
still not sufficient to cause the vaporization of the
substrate, but enough to trigger the melting of substrates.

The results in figure 10 also show that the c-LCAs are
the most mass efficient system compared to all other
LCAs and conventional ablators. It also showed that the
mass loss flux of c-LCA-p is about half of that of the
c-LCA-m and c-LCA because of the high charring
characteristic of phenolic resin. The reason for the high
mass efficiency of c-LCA-p is twofold. First, for the
LCAs with phenolic infiltrant, most energy at the surface
is being rejected by reradiation mechanism due to the
thick char layer formed by the decomposition of
phenolic. Second, the c-LCA-p’s have a carbon substrate
that has very high melting temperature (>5,000°F in inert
environment or vacuum) compared to that of the silica
substrates. The substrate remains stable even with an

increase in surface temperature. Thus, most of the
absorbed energy at the c-LCA-ph’s surface is reradiated
by both carbon substrate (emittance = 0.9) and the char
layer.

As mentioned in the material section, two of each
s-LCA-p and s-LCA-m were instrumented with
thermocouple stack to obtain the thermal response of
these two systems.

Figures 11 and 12 show the surface and in-depth tem-
perature plots of selected LCAs at heat flux 100 and
200 Btu/ft 2-sec, respectively. The surface temperature
profiles shown in these figures are obtained from an
optical pyrometer (emittance was set at 1.0 on the
pyrometer) and are corrected by using total hemi-
spherical emittance of 0.5 for all s-LLCAs. Other
profiles are the in-depth temperatures obtained

from the thermocouples. Two general observations

can be made from these plots. First, the surface and
backface temperatures at heat flux levels of 100 and
200 Btu/ft 2-sec are similar. Second, the in-depth tem-
perature profiles of LCAs with phenolic infiltrant are
slightly higher than that of LCAs with pmma infiltrant,
This behavior is expected because the phenolic resin has
higher thermal conductivity than that of pmma and that
the internal gas percolation and decomposition products
of phenolic also have higher thermal conductivity.

Figures 13(a) and 13(b) show the surface temperatures
obtained from an optical pyrometer for all tested samples
including the Avcoat and Acusil-1. The surface tempera-
tures are corrected by using the total hemispherical
emittance of 0.90 for the c-LCAs and 0.50 for the
s-LCAs. The surface temperature of c-LCAs peaked at
4300°F whereas Acusil-1 peaked at 2,500°F and is
shown in figure 13(a). It is observed that the surface
temperature is affected either by the blowing or the
charring characteristics of the resins. This is evident by
the ~200°F difference in surface temperatures between
the s-LCA-m (~3400°F) and the s-LCA-p (~3600°F) as
shown in figure 13(b).

¢. 60 MW IHF Phase III Test— A similar material test
matrix was used in the 60MW IHF Phase III, but with
the addition of the c/oak-LCA (CBCEF insulation from
Oakridge National Laboratory). The objective of this test
series was to evaluate the thermal performance of LCAs
at high heat fluxes (simulated Mars returned mission
trajectory) of 830 and 1,440 Btu/ft2-sec and stagnation
pressures of 0.081 and 0.333 atm. Pre-test and post-test
measurements are reported in table 5.

The stagnation point recession data of all the tested
samples as a function of time are shown in figure 14 for
a heat flux of 830 Btu/ft-s and stagnation pressure of



0.081 atm. One notable feature in this plot is the high
recession rate of the balsa wood (sample survived less
than 5 sec of exposure) and the low recession rates of
c-LCA-p’s. This figure also showed that all c-LCAs
generally have better performance than the s-LCAs
including the SLA-561 and MA -25S.

The superior performance of c-LCA’s is further evident
by the mass loss flux shown in figure 15. This figure
showed that the c-LCA-p has the lowest mass loss flux
and balsa wood has the highest. This plot also showed
that the addition of pmma (high blowing resin) did not
improve the performance of c-LCAs but also decreased
the mass efficiency of this system. The c-LCA-oak
material has a slightly higher recession rate compared to
the c-LCA and c-LCA-p. This result coupled with visual
observation indicated that the addition of phenolic
particles is not as efficient as the impregnation of
phenolic into the carbon substrate as reported in the
materials section. Visual observation indicated that no
spallation or only microspallation took place during the
testing of the c-LCAs. The LI-2200, which has 1.5% by
weight of SiC, exhibits similar ablation characteristic as
the phenolic impregnated s-LCAs and the conventional
ablators (Avcoat and MA -258S). Figure 15 also shows
that the s-LCA-m and SLA-561 have identical mass loss
flux. The s-LCA-w and balsa wood appeared to be the
least efficient systems. It was observed that Avcoat,
SLA-561, and s-LCAs undergo a significant shape
change, and severe spallation during test.

In general, the preliminary test results indicate that at
high flux levels, the reradiation mechanism is a main
heat dissipation process, and the boundary layer
blockage due to polymer decomposition became a
secondary mechanism.

Four of the best performing materials were selected for
testing at heating rate of 1,440 Btu/ft2-sec. As shown in
figure 16, the L1-2200 suffered severe mechanical failure
exposure. However, from visual inspection of high speed
films, it was determined that spallation occurred at

20 sec during the testing of the un-infiltrated c-LCAs.
Surface erosion and spallation were also observed after
20 sec during the test of the c-LCA-oak sample. No
similar behavior was detected for c-LCA-p, there could
be spallation in the microstage that is not detectable.
Figure 16 shows that both c-LCA-p and c-LCA-oak have
similar mass loss fluxes, but upon post-test inspection,
the c-LCA-oak suffered some surface erosion.

Finally, the effective heat of ablation is a quantity often
used to determine the materials efficiency at a given
heating rate. Figure 17 shows the mass efficiency of
materials used in three arc-jet tests as a function of cold
wall heat fluxes. Several important observations can be
made from this plot. Because of the high melting
temperature and high emittance of the carbon substrates,
the c-LCA-p’s have the highest effective heat of ablation
at heat fluxes above 400 Btu/ft2-sec. Below this flux
level, the kinetic mechanism (i.e., oxidation of carbon) is
more favorable, making the c-LCAs less efficient. At
Jow flux levels of ~100 Btu/ft2-s and low pressure
(0.018 atm), the Al-8 and Acusil-1 are more mass
efficient than all the LCAs as well as the Avcoat and
SLA-561. At 200 Btu/ft 2-s, AI-8-m’s are more mass
efficient due to the high blowing characteristics of the
pmma infiltrant. Overall, balsa wood and s-LCA-w’s are
the least efficient systems, and SLA-561 and Avcoat
maintain average performance at all heat flux levels.

Conclusion

A series of lightweight ceramic ablators were developed
and tested to evaluate their thermal performance with the
traditional ablators such as SLA-561, MA-25S, and
Avcoat-5026. It was shown that the c-LCAs with either
no infiltrant or with phenolic infiltrant are the most mass
efficient systems at heat fluxes above 400 Btu/ft2-s. No
spallation, no mechanical failure, and no shape changes
were observed during the testing of these c-LCAs up to
heat flux of 1100 Btu/ft2-s.

The addition of SiC improved the thermal performance
of silica substrates (AI-8’s) due to a significant increase
in the total hemispherical emittance of the substrates.
The presence of pmma in AI-8s showed little effect at a
flux level of ~100 Btu/ft2-s but greatly improved the
Al-LCA’s performance at flux level of 200 Btu/ft2-s.
For the case of s-LCA-m test samples, spallation and
mechanical failure became more severe at flux levels
above 100 Btu/ft2-s. The traditional ablators such as
Avcoat, SLA-561, and Acusil-1 maintain average
performance at low flux levels except for Acusil-1,
which, at 100 Btu/ft2-s, has the highest effective heat of
ablation, Heg. The general performance of s-LCA-p’s is
very similar to the conventional ablators; but significant
melt runoff was observed at the high flux levels. Balsa
wood and s-LCA-w’s undergo a shape change along
with spallation that results in high recession rates and a
low effective heat of ablation.



References

1. Henline, W. D.: Aerothermodynamic Heating
Environment and Thermal Protection Materials
Comparison for Manned Mars—Earth Return
Vehicles. AIAA Paper 91-0697, 29th Aerospace
Science Meeting, Reno, Nev., Jan. 7-10, 1991.

2. Lane, J.: An Evaluation of Ablative Materials for an
LTV Aerobrake. Phase II Study Final Report —
Aerobrake Assembly With Minimum Accom-
modation, MDSSC IRAD PD 01-286, Jan. 23,
1992.

3. For Materials Ingenuity, Some Comments on the
Thermal Conductivity of Carbon Fiberform
Insulation. FMI — Fiber Materials, Inc. internal
report.

4. Wei, G. C.; and Robins, J. M.: Carbon-Bonded
Carbon Fiber Insulation for Radioisotope Space
Power Systems. American Society Bulletin,
vol. 64, no. 5, May 1985.

5. Bartlett, E. P.; and Andersen, L. W.: An Evaluation
of Ablation Mechanism for the Apollo Heat
Shield Material. Aerotherm Report No. 68-38,
Part II, Oct. 15, 1968.

6. Williams, S. D.: Thermophysical Properties used for
Ablation Analysis. LEC-13999, Dec. 1979.

7. Beck, R. A. S,; and Blaub, B.: Materials Develop-
ment for Multiple Performance Requirements.
SAE 840920, July 16-19, 1984,

10.

11.

12.

13.

Balter—Peterson, A.; Nichols, F.; Mifsud, B.; and
Love, W.: Arc Jet Testing in NASA Ames
Research Center Thermophysics Facilities.
AJAA Paper 92-5041, AIAA Fourth
International Aerospace Planes Conference,
Dec. 1-4, 1992.

Stewart, D. A.; and Kolodziej, P.: Heating Distribu-
tion Comparison Between Asymmetric Blunt
Cones. AIAA Paper 86-1307, June 1986.

Henline, W. D.; Tran, H. K.; and Hamm, M. K.:
Phenomenological and Experimental Study of
the Thermal Response of Low Density Silica
Ablators to High Enthalpy Plasma Flow,
AIAA Paper 91-1324, 26th Thermophysics
Conference, June 24-26, 1991.

Milos, F. S.; and Rasky, D. J.: A Review of
Numerical Procedures for Computational
Surface Thermochemistry. AIAA
Paper 92-2944, 1992.

Stewart, D. A.; and Leiser, D. B.: Thermal Stability
of Ceramic Coated Thermal Protection
Materials in a Simulated High-Speed Earth
Entry. Ceramic Eng. Sci. Proc., 9[9-10], 1988,
pp. 1199-1206.

Russell, J. W.: Lunar Aerobrake Thermal Protection
System Analysis. Phase Il Study Final Report —
Aerobrake Assembly with Minimum
Accommodation, Jan. 23, 1992,



Table 1a. LCA material test matrix

e T ]
LCA Substrate Substrate LCA
identification composition, density, Infiltrant density,
% by wt. Ibm/ft3 Ibm/ft3
98.5% SiO»
Al-8 1.5% SiC particles 7.9-8.8 none 7.9-8.8
98.5% SiO»
Al-8m 1.5% SiC particles 7.9-8.8 pmma 13.4-14.5
LI-900
s-LCA-m 100% SiO; 8.8-9.3 pmma 13.3-14.8
LI-900
s-LCA-¢ 100% SiO7 8.8-9.3 epoxy 13.3-14.8
LI1-900
s-LCA-p 100% SiO7 8.8-9.3 phenolic 13.3-14.8
AETB-20-8
a2-LCA-m 70.88% SiO2 7.9-83 pmma 13.3-14.8
a2-LCA-e 27.44% A]203 epoxy
a2-LCA-p 1.68% B,03 phenolic
AETB-50-8
a5-LCA-m 38% SiO2 7.8-8.3 pmma 13.3-148
a5-LCA-e 57.44% Al203 epoxy
aS-LCA-p 1.68% B,03 phenolic
FMI carbon
c-LCA-m 100% carbon 10.8-11.3 pmma 14-15.5
FMI carbon
c-LCA-p 100% carbon 10.8-11.3 phenolic 14-15.5
Oakridge CBCF
c-LCA-o0ak with phenolic particles 17 none 17

—



Table 1b. Conventional ablators test matrix

—
Density, Test condition
Model 1.D. Composition Ibmyft3 heat flux,
Btu/ft2-s
Avcoat-5026-39HC Phenolic microballoons 100
Novalac Resin 32.00 200
Phenolic honeycomb cells 400
830
100
MA-25S (MM) Filled Elastomeric silicone 25.31 200
400
830
Elastomeric silicone
SLA-561 (MM) Silica fibers 171 830
Carbon black 1150
Cork

Microballoons
Silicone resin 100
ACUSIL-1 (Acurex) Flexcore glass phenolic H/C 30.10 200
Quartz & phenolic microballoons 400

Quartz fibers

Table 2a. Lightweight ceramic ablators nominal test conditions

q, Bu/ft2s Stag. pressure, atm Enthalpy, Btu/lbm Model radius, in.
100 0.014 5.851E+03 1.00
200 0.0256 8.653E+03 1.00
400 0.0609 1.122E+04 1.00
600 0.0766 1.061E+04 0.50
830 0.081 1.428E+04 0.50
1120 0.141 1.460E+04 0.50
1400 0.330 1.193E+04 0.50
————————

Table 2b. GCMS analysis of polymeric infiltrants

—— —
Infiltrants Carbon, % Oxygen, % Hydrogen, %
PMMA 24.20 N/D* 0.33
Epoxy 78.66 N/D 0.77
Phenolic 96.43 1.77 0.92

*N/D: Unable to detect.
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Tube connecting
to vacuum

Valve controlling flow Quantity of solution
of solution to model \
A

\ Valve to let air into
evacuated contalner

<l

Modified beaker

! )/
Solution \ O/
AN

Outer glass

Container to
/ stabilize beaker

Figure 1. Infiltration apparatus for LCA models.

Argon Argon
|
start/shield gas Air C‘z:t:;g shield gas

Anode Modular constrictor column Cathode B Nozzle

Figure 2. lllustration of segmented arc heater features.
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Figure 4. Instrumentation arrangement for LCA’s arc-jet tests.
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Figure 5. Thermogravimetric analysis of organic infiltrants. (a) Phenolic, (b) epoxy, (c) polymethylmethacrylate (pmma).
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PT2 = 0.081 atm.
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Figure 8. Effective mass loss flux based on recession data at g = 100 BtuMt?-s and PT2 = 0.012 atm.
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Figure 10. LCA’s mass loss flux and recession plots at q = 400 Btu/ft?-s and PT2 = 0.061 atm.



Temperature (°F)

Temperature (°F)

3500 - () s-LCA-p
3000 1[\,":* — Pyrometer temperature
’ b Depth = 0.20 inches
2500 | Ao, ——— Depth = 0.50 Inches
;o s Depth = 1.00 inches
! ¥ — — — Depth = 1.50 inches
2000 - .
N \"\ T/C burned out
/ }
1500 | / N
" ., \‘ \.
! 4 AN hEIN .
1000 ! Y, NN
" ./ ~s~~‘- -~ i L R A R R L L O
o 0 e T lEmmeemooo oo
'l _ .,- ............. N —— ——— T T, e, rman -
0 lEsrem—mti—— 7" | 1 I 1 I
3500 }M s-LCA-m
3000} A
]
Iy
:’ L
1 -~
2500 |- ! ] R
Il ‘I| [} Y
,' ‘J‘\.L
2000 - ¢ *~ T/C burned out
! \
1500 |- | \
I \
] “
i &l \
- <N\
1000 ,' PN
H ! b
! / Sl
500 |+ S~ i —— .
! L R R M LA PV ey bulin it T2 T PO
LS b bt e HET
0 b = ! 1 1 _
0 100 200 300 400 500 600

Exposure time (sec)
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Figure 12. LCA'’s in-depth temperature profiles at q = 200 Btu/ft2-s and PT2 = 0.025 atm. (a) LI-900/phenolic,
(b) LI-900/pmma.

20



(a) CARBON SUBSTRATES

:

Corrected temperature (°F)
5 &

1000
4000
(b) SILICA SUBSTRATES

3500 | e e e e
c __'5'___.,.-_-:-_;-.*_“.-.:.-.-'_':‘_:'.'_'.'.' '''' LI e e T T T T ""’\‘\'
e R ’.—-"—_ = . D
o 3000 L7 1 — ~ 0
é o . 'I _ //’ h \
E S \
8_ N l’ /
E 2500 - - \
8 Y \

." l \

2 /!
g 200017 ... s-LCA-p !
5 / - s-LCA-m \
(&) P’ .......... Al_a_m \ -

1500 - — — — Avcoat

1000 I L 1 1 l ]

0 10 20 30 40 50 60

Exposure time (sec)

Figure 13. LCA'’s surface temperature plots obtained from an optical pyrometer at § = 400 Btu/ft?-s and
PT2 = 0.061 atm. (a) Carbon substrates, (b) silica substrates.
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